K(+)-evoked Müller cell depolarization generates b-wave of electroretinogram in toad retina.

نویسندگان

  • R Wen
  • B Oakley
چکیده

We tested the hypothesis that a light-evoked increase in [K+]o produces a depolarization of the Müller cell membrane, which in turn generates the electroretinogram b-wave current. Using Bufo marinus isolated retinas and K(+)-selective microelectrodes, we recorded two distinct light-evoked increases in extracellular K+ concentration: one in the inner plexiform layer and the other near the outer plexiform layer; the "distal" K+ increase was found over only 10-microns depth and had a maximum amplitude of 0.3 mM. We also recorded the electroretinogram and the light-evoked responses of rods and Müller cells. After correction for the response time of the K(+)-selective microelectrode, the waveforms of all three of these responses were almost exactly as predicted by an earlier computer simulation of the K+/Müller cell hypothesis of the b-wave by Newman and Odette [Newman, E.A. & Odette, L.L. (1984) J. Neurophysiol. 51, 164-182]. The distal K+ increase and the b-wave varied in a similar manner as a function of stimulus irradiance. Superfusion with 0.2 mM Ba2+ attenuated both the Müller cell depolarization and the b-wave by approximately 65% but had no significant effect upon the distal K+ increase. Because Ba2+ reduces K+ conductance of Müller cells, these results are very strong support of the K+/Müller cell hypothesis of the origin of the electroretinogram b-wave; the light-evoked increase in extracellular potassium concentration still is present during superfusion with Ba2+, but the K(+)-evoked Müller cell depolarization and the b-wave are decreased in amplitude because Müller cell K+ conductance is reduced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model of electroretinogram b-wave generation: a test of the K+ hypothesis.

Generation of the electroretinogram b-wave is simulated with a computer model representing a dark-adapted amphibian retina. The simulation tests the K+ hypothesis of b-wave generation, which holds that b-wave currents arise from localized Müller cell depolarizations generated by light-evoked increases in extracellular K+ concentration, [K+]o. The model incorporates the following components and ...

متن کامل

Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina.

The inwardly rectifying potassium channel Kir4.1 has been suggested to underlie the principal K(+) conductance of mammalian Müller cells and to participate in the generation of field potentials and regulation of extracellular K(+) in the retina. To further assess the role of Kir4.1 in the retina, we generated a mouse line with targeted disruption of the Kir4.1 gene (Kir4.1 -/-). Müller cells fr...

متن کامل

B-wave of the electroretinogram. A reflection of ON bipolar cell activity

Light-evoked intraretinal field potentials (electroretinogram, ERG) have been measured simultaneously with extracellular potassium fluxes in the amphibian retina. The application of highly selective pharmacologic agents permitted us to functionally isolate various classes of retinal neurons. It was found that: (a) application of APB (2-amino-4-phosphonobutyrate), which has previously been shown...

متن کامل

Effects of ornithine on the electroretinogram in cat retina.

PURPOSE To study the acute effects of L-ornithine hydrochloride on the function of cat retina in vivo. METHODS A small amount of ornithine was administered intravitreously or intravenously. Changes in retinal function were monitored by vitreal electroretinogram (ERG) and intraretinal ERG with K(+)-selective microelectrodes. RESULTS Intravitreal injections (0.2 to 0.5 M; 15 microliters) of o...

متن کامل

Contribution to the kinetics and amplitude of the electroretinogram b-wave by third-order retinal neurons in the rabbit retina

The ERG b-wave is widely believed to reflect mainly light-induced activity of on-center bipolar cells and Müller cells. Third-order retinal neurons are thought to contribute negligibly to generation of the b-wave. Here we show that pharmacological agents which affect predominantly third-order neurons alter significantly both the kinetics and amplitude of the b-wave. Our results support the noti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 87 6  شماره 

صفحات  -

تاریخ انتشار 1990